导读:《纽约时报》网站今天刊载文章称,“大数据时代”已经降临,在这一领域拥有专长的人士正面临许多机会。文章指出,“大数据”正在对每个领域都造成影响。举例来说,在商业、经济及其他领域中,决策行为将日益基于数据和分析而作出,而并非基于经验和直觉;而在公共卫生、经济发展和经济预测等领域中,“大数据”的预见能力也已经崭露头角。以下是这篇文章的全文。
欢迎来到“大数据时代”(Age of Big Data)。硅谷新贵们——最初是在谷歌,现在是在Facebook——都精通于驾驭网络数据(网络搜索、帖子和信息等)与互联网广告之间的关系。在上个月于瑞士达沃斯召开的世界经济论坛上,大数据是讨论的主题之一。这个论坛上发布的一份题为《大数据,大影响》(Big Data, Big Impact)的报告宣称,数据已经成为一种新的经济资产类别,就像货币或黄金一样。
“生命中的一天”(Day in the Life)系列摄影作品的创作人里克-斯莫兰(Rick Smolan)正计划在今年晚些时候推出一个新项目,这个名为“大数据的人类脸孔”(The Human Face of Big Data)的项目将记录数据的采集和使用。斯莫兰是一名狂热分子,他认为“大数据”有成为“人性仪表盘”的潜力,也就是一种能帮助人类与贫穷、犯罪和污染等现象展开斗争的智能工具。而私人部门的倡导组织则持有悲观的观点,警告称“大数据”与“独裁者”(Big Brother)同出一辙,只是披上了企业的外衣。
什么是“大数据”?这当然是一个带有文化基因和营销理念的词汇,但同时也反映了科技领域中正在发展中的趋势,这种趋势为理解这个世界和作出决策的新方法开启了一扇大门。根据科技研究公司IDC作出的估测,数据一直都在以每年50%的速度增长,换而言之,也就是每两年就增长一倍。这不是简单的数据增多的问题,而是全新的问题。举例来说,在当今全球范围内的工业设备、汽车、电子仪表和装运箱中,都有着无数的数字传感器,这些传感器能测量和交流位置、运动、震动、温度和湿度等数据,甚至还能测量空气中的化学变化。
将这些交流传感器与计算智能连接起来,那么你就会看到所谓的“物联网”(Internet of Things)或“工业互联网”(Industrial Internet)。在信息获取的问题上取得进步也是促进“大数据”趋势发展的原因之一。举例来说,政府数据——聘用数据及其他信息——一直都在稳步地向网络转移。在2009年中,美国政府通过启动Data.gov网站的方式进一步开放了数据的大门,这个网站向公众提供各种各样的政府数据。
数据不仅仅是正在变得更加可用,同时也正在变得更加容易被计算机所理解。“大数据”发展趋势中所增加的大部分数据都是在自然环境下产生的,比如说网络言论、图片和视频等不受控制的东西,以及来自于传感器的数据等。这些是所谓的“非结构化数据”,通常不能为传统的数据库所用。
但是,旨在从互联网时代非结构化数据的庞大“宝藏”中获得知识和洞察力的计算机工具正在迅速发展中。在这种工具发展的最前沿是迅速取得进步的人工智能(AI)技术,比如说自然语言处理、模式识别和机器学习等。
这些人工智能技术能应用于许多领域。举例来说,谷歌的搜索和广告业务及其实验中的机器人(300024)汽车都利用了很多的人工智能技术。在加利福尼亚州的公路上,谷歌的机器人汽车已经跑了数千英里的路。谷歌的这两项业务都让“大数据”时代的挑战却步,它们对数量庞大的数据进行分析,并作出瞬时的决策。
反过来,大量的新数据也正在加快计算领域的进步,这是“大数据”时代中的一个良性循环。举例来说,机器学习算法能基于数据来进行学习,数据越多机器就能学到越多。以苹果在去年秋天推出的iPhohne手机Siri语音助理服务为例,这个应用的源头可回溯至五角大楼的一个研究项目,该项目随后被分离出来,成为了一家硅谷创业公司。苹果在2010年收购了Siri,并继续向其提供更多数据。时至今日,在人们提供成百上千万条问题的环境下,Siri正在变成一种日益熟练的个人助理,能向用户提供提醒服务、天气预报、餐饮建议和对大量问题作出解答等服务。
麻省理工学院斯隆管理学院的经济学教授埃里克-布吕诺尔夫松(Erik Brynjolfsson)称,如果想要理解“大数据”的潜在影响力,那么可以看看显微镜的例子。显微镜是在四个世纪以前发明的,能让人们看到以前从来都无法看到的事物并对其进行测量——在细胞的层面上。显微镜是测量领域中的一场革命。
吕诺尔夫松解释称,数据测量就相当于是现代版的显微镜。举个例子,谷歌搜索、Facebook帖子和Twitter消息使得对人们行为和情绪的细节化测量成为可能。
吕诺尔夫松进一步指出,在商业、经济及其他领域中,决策行为将日益基于数据和分析而作出,而并非基于经验和直觉。“我们能开始变得远为科学化。”他这样说道。
有很多的轶事证据表明,数据至上的思考方式将带来很高的回报。其中,最著名的例子仍旧是迈克尔-刘易斯(Michael Lewis)在2003年出版的《点球成金》(Moneyball)一书,这本书记录了低预算的奥克兰运动家队是如何利用经过分析的数据和晦涩难解的棒球统计学来找到被评价过低的棒球手的。在布拉德-皮特(Brad Pitt)主演的电影版《点球成金》去年被搬上银幕以前,深度的数据分析就不仅已经成为棒球领域中的标准,而且在英国足球联赛等其他体育项目中也是如此。
-
没有关键字相关信息!
- 信息系统运维预算定额参考标准研究[04-09]
- 第2章 跨文化管理理论和实践[01-14]
- 16:什么是关键成功因素法(CSF)?[06-09]
- 24:eSCM-SP(服务提供商外包能力模型)有哪些…[06-10]
- 第4章 跨文化沟通[01-14]
- 治理评论第一期[01-20]
- 治理评论第二期[01-20]
- 治理评论第五期[01-20]
- 治理评论第三期[01-20]
- 治理评论第四期[01-20]
- 治理评论第六期[01-20]
- 太极凭什么中标12306? [09-26]
- 中国国际航空股份有限公司--书评[11-01]